Synopsis:
Hashmaps deserializing with incorrect hashcodes because obj not yet deserialized

Full OS version:
Microsoft Windows [Version 6.1.7601] (this is 64 bit Windows 7)
It has also been tested in multiple other operating systems, by my users, who are seeing the same bug.

Development Kit or Runtime version:
java version "1.7.0"
Java(TM) SE Runtime Environment (build 1.7.0-b147)
Java HotSpot(TM) 64-Bit Server VM (build 21.0-b17, mixed mode)

Also java version 1.6 update 26 (on the same computer), and also the versions of java that my users are using.

Description:
When deserializing (in this case from a file) a linked hashmap containing objects is calculating the wrong hashcodes for the objects.
This results in the objects going into the wrong buckets.
I was able to see that the objects themselves were not being deserialized/resolved before the hashmap was, and their internal data was just a series of nulls and default values.
Later while running the program, doing .get(obj) on the hashmap, using the exact object, resulted in null when it should have returned the object mapped to it.

The hashmap only contains 1 object key.
The object key in the hashmap is one created by me. It has a superclass with a single constructor with 3 arguments. The superclass has 3 fields, all of them final, and the arguments are saved to these fields. The hashcode and equals of the superclass are over-ridden and use 2 of these fields. These 2 fields are never null, and 1 of them is a string, while the other is a very simple object that never changes (the object is, for all purposes, just a string as well). The subclass does not have any constructors and does not override any anything.
In short, the hashcode for this particular object never changes, it is always the same code from the second it is created (as it should be).

When I am in debug mode (stop point at the .hashcode of the superclass), and I deserialize the file, I can see my object is essentially a null object. All the fields in it are null.

If I add some debug code to have the object show its hashcode after the deserialization of the file is complete, the hashcode shows the correct number. I can add this object to the hashmap, resulting in the hashmap now having in the same object in it twice.

The problem only occurs in some of the hashmaps. In other words, I have about 10 of these hashmaps, all with 1 single object in them (the same object in each actually), and roughly half of them have the object in the wrong bucket while the other half have it in the correct bucket.

We know the problem is deserialization because if we never save to a file, then open that file, this bug never occurs.

Frequency: Always

Steps to Reproduce:
I can reproduce this problem every single time I try, using my open source project's code. I was able to walk two people through reproducing this problem by sharing a desktop screen, in under 15 minutes.
I would be happy to skype with anyone who wants to reproduce this problem, my skype is "markchristopherduncan".

Steps to reproduce, assuming you are using my open source project's code:
1. Download the source code to the latest version of the open source project "TripleA", and then unzip it somewhere. (TripleA is a boardgame written in java) It can be found here:
http://sourceforge.net/projects/tripleamaps/files/maps/preview/triplea_1_6_0_0_source_code_only.zip

2. Download this savegame. (technically option, since you can easily recreate the savegame if you have done steps 1 and 2, but this will make your life a little easier)
http://sourceforge.net/projects/tripleamaps/files/maps/preview/TripleA_java_hashmap_bug.tsvg

3. Compile the source code and run it.
Build setting are that "src", "test", and "data" are on the build path. There no exclusions or filters. Run "games.strategy.engine.framework.GameRunner" as a java application.

4. After the program is running, click "load saved game", and then load the savegame you downloaded in step 2.

5. On the right side of the screen, click "buy tech tokens", and then buy 1 tech token. Then select "6" as the dice (red die), and then select "6" again.
The message should inform you that you have researched "Improved_Mech_Inf" successfully.

6. Click "Ok". A screen will come up with some pictures. Click ok on that too to close it, and then click "done" on the right side of the screen. You will now get the error.

The problem can be located in the following 3 files:
TriggerAttachment.java contains the hashmap, called "m_support" on line 69. The error occurs on line 2111 when we try to get the key.
UnitSupportAttachment.java is the object that is the key in the hashmap.
Both of the above extend DefaultAttachment, which is a file that overrides hashcode and equals.

Expected Result:
I expected that the deserialization be done properly and correctly. That the object be resolved before any hashcode is taken of it. That the object goes into the correct bucket, thereby allowing .get(obj) on it to work.

Actual Result:
Hashmap contained an object placed in the wrong bucket, resulting from deserializing the hashmap and calling hashcode on its component object keys before the object keys themselves were fully deserialized/resolved. This rendered the hashmap unusable and buggy, giving my users and me errors.

Error Message(s):
The error message is not important, it is just a null pointer error because we are not expecting a null at this location of the code (it can't be null).

Exception in thread "Triplea start thread" java.lang.NullPointerException
	at games.strategy.triplea.attatchments.TriggerAttachment.triggerSupportChange(TriggerAttachment.java:2111)
	at games.strategy.triplea.delegate.TechActivationDelegate.start(TechActivationDelegate.java:108)
	at games.strategy.engine.framework.ServerGame.startStep(ServerGame.java:567)
	at games.strategy.engine.framework.ServerGame.runStep(ServerGame.java:467)
	at games.strategy.engine.framework.ServerGame.startGame(ServerGame.java:291)
	at games.strategy.engine.framework.startup.launcher.LocalLauncher.launchInNewThread(LocalLauncher.java:99)
	at games.strategy.engine.framework.startup.launcher.AbstractLauncher$1.run(AbstractLauncher.java:46)
	at java.lang.Thread.run(Thread.java:722)

Source code for an executable test case:
I do not know how to make a test case that shows this problem.
My project is open source, and the files involved are not very big. I would be happy to walk someone through reproducing this problem.

The source code can be found here:
http://sourceforge.net/projects/tripleamaps/files/maps/preview/triplea_1_6_0_0_source_code_only.zip

The problem can be located in the following 3 files:
TriggerAttachment.java contains the hashmap, called "m_support" on line 69. The error occurs on line 2111 when we try to get the key.
UnitSupportAttachment.java is the object that is the key in the hashmap.
Both of the above extend DefaultAttachment, which is a file that overrides hashcode and equals. (technically TriggerAttachment extends another class that extends DefaultAttachment)

It could be that because both classes extend the same superclass, and one of these subclasses contains a hashmap of keys of the other subclass. While this is legal, maybe java is not able to handle deserialization of this.

Please contact me for any questions, I am more than willing to help, and I am also more than willing to try any workarounds.

Workaround:
Don't use hashmaps, or do not deserialize them.
This error, which seems to exist on all versions of java and all operating systems, is very big.
Hashmap is a core java class, and people expect it to deserialize properly.

I have attempted to use readObject and validateObject to solve this by workaround, but it is not solving it. ValidateObject comes too late, by then the object is already in the hashmap. I am not an expert java programmer, so I don't know what else I can do.

Possible Related Bugs or Information:
http://bugs.sun.com/view_bug.do;jsessionid=fb27da16bb769ffffffffebce29d31b2574e?bug_id=6208166
(this bug: http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=7178900)

